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Abstract

Neuroimaging is critical in clinical care and research, enabling us to investigate the
brain in health and disease. There is a complex link between the brain’s morphological
structure, physiological architecture, and the corresponding imaging characteristics.
The shape, function, and relationships between various brain areas change during
development and throughout life, disease, and recovery. Like few other areas,
neuroimaging benefits from advanced analysis techniques to fully exploit imaging
data for studying the brain and its function. Recently, machine learning has started
to contribute (a) to anatomical measurements, detection, segmentation, and
quantification of lesions and disease patterns, (b) to the rapid identification of acute
conditions such as stroke, or (c) to the tracking of imaging changes over time. As
our ability to image and analyze the brain advances, so does our understanding of
its intricate relationships and their role in therapeutic decision-making. Here, we
review the current state of the art in using machine learning techniques to exploit
neuroimaging data for clinical care and research, providing an overview of clinical
applications and their contribution to fundamental computational neuroscience.
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Background

Since recognizing the brain’s significance
for human cognition, scientists have stud-
ied the intricate relationshipbetweenbody
and mind [1]. The complexity of the hu-
man brain has fostered an array of ad-
vancedneuroimaging techniques to quan-
tify its structure and function [2]. These
techniques provide insights for neurosci-
entific research, clinical evaluation, and
treatment decisions.

Machine learning can identify patterns
and relationships of signals in neuroimag-
ing data. Classification and regression
techniques detect and quantify clinically
relevant findings with increasing reliabil-
ity and accuracy. Yet, these models can
do more than repeat what we train them
to do. What if instead of trusting the
neuroanatomy to guide the comparison

of individual brains, we use their individ-
ual functional interaction structure itself to
establish correspondences? Can machine
learning help to create cortical maps of
functional roles, or the influence of genes
and environment? Machine learning may
offer a tool to fundamentally change our
perspective on the observations we make.

A tangible visualization of the brain’s
anatomy and neurophysiological proper-
ties is essential for cognitive neuroscience
and clinical applications [2]. Neuroimag-
ing can be broadly characterized by two
categories: structural and functional imag-
ing. Structural neuroimaging aims to vi-
sualize the anatomy of the central nervous
system and to identify and describe struc-
tural anomalies associated with traumatic
brain injury, stroke, or neurological dis-
eases such as epilepsy or cancer [1]. Struc-
tural MRI can also serve as a predictor for
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various neurological and psychiatric disor-
ders [3]. Functional neuroimaging on the
otherhandcaptures thebrain’s neurophys-
iological ormetabolic processes. In clinical
practice, it is important tounderstandneu-
rological impairment andneuropsychiatric
disorders, and to informsurgical treatment
to keepvital cognitive function suchas lan-
guage or motor capabilities unharmed [4].
Although functionalMRI (fMRI) findsbroad
applications in research, it is typically lim-
ited to task-based preoperative mapping
ofessential functionssuchasmotorcontrol
in clinical routine [5]. Resting-state fMRI
hasemergedasapromisingtool [6, 7] since
it does not rely on the patient’s ability to
perform a specific task. Although promis-
ing, the translation into clinical practice
is still challenging [8]. Nevertheless, the
importance of the interconnectedness of
the brain has been acknowledged in the
clinical context [9]. While fMRI is a cen-
tral modality in functional imaging [10],
other imaging techniques such as positron
emission tomography (PET; [11]) or MR
spectroscopy [12] can capture underly-
ing metabolic processes and thus comple-
ment structural imaging. Characterizing
metabolic properties in the brain is useful
for a variety of clinical applications, such
as defining infiltration zones and tumor
properties in neuro-oncology [13, 14], un-
derstanding the pathogenesis of progres-
sivediseases suchasmultiple sclerosis [15],
or understanding neuroinflammation and
psychiatric disorders [16]. Compared to
structural imaging, functional neuroimag-
ing candetect underlyingneurophysiolog-
ical andmolecularproperties, andcombin-
ingbothenablesamulti-modaldescription
of the brain and the modeling of its struc-
ture–function relationship as a marker for
disease [17–19].

Computational analysis has long been
part of neuroimaging, as the recorded sig-
nals must be translated into quantitative
comparable measurements for which re-
lationship to disease and treatment re-
sponse can be assessed. The tool box
includes techniques such as image-based
registration to establish correspondence
across individuals for summary and com-
parisonofmeasurements [20], voxel-based
morphometry (VBM; [21]) to quantify phe-
nomena such as gray matter atrophy [22],

or statistical parametric maps obtained by
general linear models (GLM; [23]).

In this context, machine learning has
gained significant importance. Early work
advanced functional neuroimage analysis
from univariate inspection of individual
voxels as in GLM analysis [24] to localized
activity patterns [25] and the detection
of multivariate widely distributed func-
tional response patterns [26, 27]. These
distributed functional patterns offered the
opportunity to treat and align their rela-
tionship architecture similarly to anatom-
ical maps [28]. Decoupling the analysis
of function from its anatomical location
altogether enabled the assessment of in-
stances where anatomy is affected by dis-
ease such as in brain tumors and reorgani-
zational processes [29]. Machine learning
led to a substantial acceleration in brain
segmentation[30], imageregistration, and
the mapping of individuals to atlases [31].
Finally, it has led to the ability to auto-
matically detect and segmentbrain lesions
such as tumors with high accuracy and re-
liability [32].

Here, we review the current state of
the art of machine learning in neuroimag-
ing. We structure the overview into three
areas. The review of machine learning
for structural neuroimaging includes the
registration, segmentation, and quantifi-
cation of anatomy as well as the detection
andanalysisoffindingsassociatedwithdis-
ease. The overview of machine learning
for functional neuroimaging encompasses
multivariate analysis of response and the
independent representation of function
and anatomy as they may be decoupled
through development or disease. Finally,
network analysis describes how brain net-
works can be quantitatively assessed and
represented. In each section we address
research and clinically relevant applica-
tions of machine learning techniques. Fi-
nally, we summarize open challenges that
may be tackled with machine learning ap-
proaches.

Machine learning in structural
neuroimaging

Structural neuroimaging is the mainstay
in clinical diagnostic neuroradiology. Al-
though it can only capture overt structural
properties of the brain, it is of great value

in supporting the diagnosis and treatment
decisions for various diseases [1]. It facil-
itates quantifying the size of brain struc-
tures and their deviation associated with
disease as potential markers for clinical
outcome [33]. Given the availability of
structural neuroimaging, machine learn-
ingapproachesaimtoutilize the increasing
number of available images to establish
robust models for segmentation, classifi-
cation, orprediction tasks ([3, 34];. Fig. 1).

Structural imaging for quantification
of anatomical structures

The accurate segmentation of neu-
roanatomical structures is important as
a basis for their quantification and as
a prerequisite for the analysis of possible
anomalies of specific areas related to
clinical findings, disease, and treatment
response. While early work on brain seg-
mentation focused on atlas-based tissue
probability maps [35, 36], recent machine
learning-based approaches aim to pre-
dict accurate segmentation labels. Deep
convolutional neural network approaches
were able to improve the segmentation
of neuroanatomy compared to standard
tools in both speed and accuracy [30].
Deep learning-based approaches have
shown promising results for challenging
applications of brain tissue segmentation,
such as in neonates [37] and fetuses [38].
Furthermore, a U-net deep learningmodel
has demonstrated the feasibility of highly
accurate segmentation of neuroanatom-
ical structures from CT scans [39]. The
robust quantification of anatomical struc-
tures is important to establish markers
of disease progression and outcome, and
the introduction of deep learning-based
U-net models [40] has advanced the ac-
curacy of medical image segmentation
overall. Such models have been success-
fully applied to automatically quantify
possible structural markers with prognos-
tic values, such as temporalis muscle mass
[41], white matter hyperintensities [42],
or brain vessel status [43].

Structural imaging for disease
assessment

One important application of structural
neuroimaging in clinical routine is lesion
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detection and characterization. The char-
acterization of brain tumors benefits from
the wide range of available neuroimag-
ing techniques and modalities. A multi-
tude ofmachine learning approaches have
been applied to brain tumors to improve
their delineation and characterization, in-
forming treatment decisions to ultimately
improve patient outcome. Deep learning
approaches have improved lesion detec-
tion by quantifying anomalies in a model
of normal brain structure [44]. Machine
learning for fully automated quantitative
tumor characterization contributed to the
basis for clinical decision-making [45]. This
potential benefit in neuro-oncology has
also prompted scientific initiatives such as
the Brain Tumor Segmentation Challenge
(BraTS; [32]), highlighting the value of data
sharingformethodological improvements.
This challenge leverages multimodal MRI
data from multiple institutions, bringing
together the scientific community to eval-
uate and advance segmentation, predic-
tion, and classification tasks within the
highly heterogeneous brain tumor land-
scape. In addition to raw imaging data,
this initiative also provides preprocessed
data and radiomic features in an accessi-
ble open dataset to lower the barrier for

the development of newmachine learning
approaches [46].

Radiomics has become a widely
adopted approach in medical image
analysis [47], aiming to describe lesions
via tissue properties based on shape,
intensity, and texture features [48]. Such
features build the basis for unsuper-
vised learning, aimed at identifying and
characterizing subgroups based on their
radiomic features, or classification tasks,
assessing features for their discriminative
power (. Fig. 1). In the clinical context,
machine learning approaches based on
radiomic features have been used to iden-
tify subgroups of tumor patients [49] or to
differentiate between primary central ner-
vous lymphoma and atypical glioblastoma
[50, 51].

Another area in which structural neu-
roimaging and machine learning are rele-
vant is the assessment of patients with
epilepsy. Here, the detection of often
subtle cortical malformations or lesions is
critical for informing treatment decisions.
Supervised machine learning approaches
suchasartificialneuralnetworkshavebeen
shown to identify focal cortical dysplasia
[52, 53]. Unsupervised approaches includ-
ing clustering techniques were able to re-
veal a structural anomaly landscape that

defines distinct subgroups of patientswith
epilepsy [54]. Asimilarapplicationofunsu-
pervised machine learning was able to de-
tect subtypes in multiple sclerosis that ex-
hibited distinct treatment responses [55].
In acute stroke, where rapid treatment de-
cisions are essential, machine learning has
the potential to improve patient outcome
by detecting the type of arterial occlusion
or hemorrhage and informing short- and
long-term prognosis [56]. Machine learn-
ing has also facilitated the linking of dis-
ease-related imaging phenotypes to their
underlying biological processes. For in-
stance, so-called radiogenomics in glioma
patients showed promise to inform treat-
ment decisions in a personalized medicine
approach to support optimal treatment
decisions [57].

Machine learning in functional
neuroimaging

Functional neuroimaging aims at captur-
ing neurophysiological processes in the
brain. The use of fMRI has given rise to
mapping the location of cognitive func-
tionsacross thecortex, so-called functional
localization. This is relevant in basic neu-
roscience and in clinical applications such
as the presurgical localization of eloquent
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areas. Thefirst functional localization tech-
niques treated each brain region indepen-
dently in a univariate fashion [23]. How-
ever, as fMRI can image the entire brain,
it enables the analysis of relationships be-
tween brain regions. Therefore, multivari-
ate machine learning approaches, relating
observations and relationships acrossmul-
tiple brain regions, are relevant [26].

Detecting multivariate functional
response patterns: encoding and
decoding

The multivariate nature of the brain mo-
tivated machine learning approaches for
functional mapping, aiming to map the
anatomical location of cognitive function.
Initial fMRI analysis was dominated by
mass univariate task activation analysis
[23], and only in the early 2000s did
processing of multivariate patterns of
neuronal signals emerge [58]. Multivari-
ate pattern analysis (MVPA) is a broad
term describing methods of machine
learning that aim to decode neuronal

activity as response patterns rather than
as isolated brain regions. It demonstrated
a distributed representation of high-level
visual perception for faces and objects
[26]. While mass univariate analysis strug-
gles to reveal distributed effects, machine
learning approaches make it possible
to capture and model the multivariate
phenomenon of brain activity, provid-
ing a more complete picture of neural
activation.

Machine learning models link the ob-
served neuroimaging information such as
the sequential BOLD signal observed for
each image voxel of fMRI data to experi-
ment conditions, aiming to identify brain
regions whose functional signal is associ-
ated with the condition (. Fig. 2). Encod-
ingmodels attempt to predict the image
signal at each voxel based on the exper-
iment condition. They then test for each
individual voxel if its signal can be pre-
dicted fromexperiment conditions such as
the class of the visual stimulus. Univariate
encodingmodels such as the GLM [23] are
a prominent example, testing each indi-

vidual voxel independent of the others. If
prediction is possible, then GLM treats it as
evidence of a significant association or “ac-
tivation” of this region by the experiment
condition. Multivariate encoding models
represent the experiment condition with
a feature vector instead of a single on/off
label. Examples are the representation of
words with the help of semantic features
to investigate the mapping of semantic
concepts across the cortex [59], or the
extraction of visual features from images
or movies to establish a cortical map of
the representations of visual concepts [60,
61]. Decodingmodels predict experiment
condition features from the brain imaging
data. Typically, a feature selection method
is then used to identify sets of features, i.e.,
voxels, that contribute to a successful pre-
diction of the condition from the imaging
data. In contrast to univariate models that
test each voxel’s association (e.g., correla-
tion) with the condition independently of
others, multivariate models treat the func-
tional imaging data as a pattern possibly
consisting of many distributed voxels [62].
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Therefore, multivariate models can iden-
tify distributed areas, for which individual
tests might not identify a relationship, but
which takenas awhole actually carry infor-
mation about the experiment condition.
Examples of such approaches are the iden-
tificationofdistributedpatterns associated
with face processing [26] that spread be-
yond areas connected in a univariate man-
ner such as the fusiform face area [24].
The so-called searchlight technique pro-
posed an intermediate approach, where
instead of individual voxels, the ability of
functional patterns observed in localized
cortical patches topredict experimentcon-
ditions was tested [25]. Ensemble learning
approaches such as random forests were
usedto identifywidelydistributedpatterns
associated with visual stimuli. Ensemble
learningapproacheshaveapropertycalled
the “grouping effect”; they identify all in-
formative voxels, even if they are highly
correlated, as opposed to only selecting
the single most informative one. Con-
sequently, their feature-scoring method-
ology, called “Gini importance,” makes it
possible tomore reliablydetect patterns of
activation in the form of the so-called Gini
contrasts with higher reproducibility [27]
than approaches such as support vector
machine-based recursive feature elimina-
tion [63].

Decoding models have introduced the
capability to reconstruct stimuli from ob-
servedbrain activation. While “mind-read-
ing applications,” such as using fMRI as a lie
detector, arenot feasiblewith fMRI [64], re-
markable results have been achieved for
the decoding of visual stimuli [60] and
even dreams [65]. Even for video de-
coding, a regularized regression approach
was used to model dynamic brain activity
and was successfully applied to generate
similar videos as seen based on the neu-
ronal response patterns in the visual cor-
tex [66]. Similar remarkable progress was
made with the decoding of the semantic
landscape of natural speech-related brain
activity [67], and recent advances in brain
decoding have shown that deep learning
models can establish a predictor of eye
movement from fMRI data [68].

As the number of available data have
increased, deep learning models have be-
come relevant in functional neuroimag-
ing. While conventional linear models can

be on par with deep learning approaches
[69], recent studies have demonstrated
that deep learning encodes robust dis-
criminative neuroimaging representations
to outperform standard machine learning
[70].

Brain networks and their change
during disease

Neuroimaging is able to capture struc-
tural connectivity in the form of nerve
fiber bundles with diffusion tensor imag-
ing (DTI) or functional connectivity in the
form of correlation among fMRI signals.
This enables the analysis of structural or
functional brain networks, an area called
“connectomics” [73]. Each point on the
cortex is viewed as a node in a graph. The
connections between pairs of nodes are
assigned a measure of connectivity, de-
fined, for instance, by the correlation of
fMRI signals observed at the two nodes
(. Fig. 3). Graph analysis then measures
the connectivity properties of individual
nodes, with characteristics ranging from
the number of connections of a node, the
so-called degree, to the role of the nodes
in connecting otherwise relatively dissoci-
ated networks, the so-called hubness [74].
Statistical analysis of networks [75] has led
to insights into the differences of networks
across cohorts and the changes duringdis-
ease progression or during brain develop-
ment[76]. Representationalapproachesto
render global network structures compa-
rable, and to find components of networks
in other networks (see “Machine learning
for alignment” section), have led to the
ability to track network changes during
reorganization in tumor patients [29] or
to model the brain network during mat-
uration [77]. Brain network structures are
more challenging to process with deep
learning methods than image data. In-
stead of a regular grid structure as in the
voxel representation, graphs are largely ir-
regular, and their neighborhood relation-
ships—a critical component of deep artifi-
cial network architectures—are heteroge-
neous. Nevertheless, research has become
active in the area of graph convolutional
neural networks in neuroimaging [78].

The relationship between biological
and artificial neural systems

Machine learning does not only provide
a toolbox for the analysis of neuroimaging
data. Methodological advances in fields
such as deep learning and artificial neural
networks are heavily guided by our un-
derstanding of biological networks. The
relationship between biological instances
and computational implementations of
the three core components—objective
functions, learning rules, and network
architectures—is attracting increasing
scientific attention [79]. Deep neural
networks have been used as a model to
understand the human brain [80], and in
the opposite direction, the topology of
human neural networks has been used
to shape the architecture of artificial
neural networks [81]. The quantitative
comparison of real biological neural net-
works and artificial neural networks is
challenging, not least because the best
computational learning algorithms do not
fully correspond to biologically plausible
learning mechanisms [82]. Nevertheless,
fMRI offers comparative analysis of neural
systems, as developed for cross-species
analysis [83]. To this end, the dissimilarity
of functional activation when processing
different visual stimulus categories can be
measured in fMRI. At the same time, it can
be read out from perceptron activations
in artificial neural networks. While the
individual activations are not comparable,
their dissimilarity structure is, leading
to insights into how convolutional neural
networks trained to classify objects resem-
ble parts of the human inferior temporal
lobe [84]. This has inspired research into
the increasingly fine-grained mapping
between artificial convolutional neural
networks and the visual cortex [85].

Clinical relevance of machine
learning and functional imaging

The brain network architecture is critical
for our cognitive capabilities and canbe af-
fected by disease [86]. Hence, quantifying
and understanding associated changes
in the network architecture, or modeling
reorganization mechanisms associated
with disease progression and recovery,
are clinically relevant. Clinical application
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is challenging, but initial results show
promise [87]. Machine learning enables
the comparison of networks, the detection
of anomalies, and the identification of as-
sociations between disease and network
alterations up to the establishment of
early markers preceding more advanced
disease. Deviations in the connectivity
structures from a normative model have
been found to bepredictive of brain tumor
recurrence up to 2 months in advance
[88]. Alterations in functional connectivity
patterns were also predictive of cognitive
decline and showed different manifes-
tations in low- and high-grade gliomas
[89]. Patients suffering from epilepsy or
undergoing epilepsy surgery exhibit spe-
cific reorganization patterns of network
architecture [71, 90]. Supervised machine
learning using functional connectivity

data revealed disease correlates not vis-
ible in structural imaging, for instance,
deep learning models for the identifica-
tion of characteristics of autism spectrum
disorders [91] or a generative autoencoder
model to classify autism [92]. An example
of the relevance of brain network dynam-
ics is the investigation of patients with
schizophrenia [93]. Electroencephalogra-
phy is a cost-effective and widely available
tool in the clinical routine for early di-
agnosis, and its high temporal resolution
can be leveraged by machine learning
approaches [94]. Deep convolutional net-
works utilizing electroencephalography
recordings have been successfully applied
to detect and classify seizures in patients
with epilepsy [95] and to classify attention
deficit hyperactivity disorder [96].

Machine learning for alignment

Establishing reliable correspondence
across the brains of individuals and co-
horts is essential for group studies and for
probing the impact of disease or interven-
tion on an individual’s brain. Therefore,
a variety of image registration approaches
have been proposed to align individual
brains to a common reference framebased
on their anatomical properties [97].

Machine learning for structural
image registration

Structural registration methods for the en-
tire brain volume or cortical surface op-
timize an objective function by deform-
ing one image to match another. Here,
machine learning approaches to improve
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alignment of anatomy have contributed
to increasing speed with techniques such
as voxel morph [31] for entire volumes, or
methods aligning cortical surfaces [98].

Machine learning for functional
alignment

Can we establish alternative bases for reg-
istration, if anatomical correspondence is
only loosely coupled to functional roles
as is the case in the prefrontal cortex
[99] or after reorganization due to dis-
ease? The anatomy of the brain is highly
variable [100] and even after structural
alignment a substantial amount of func-
tional variability remains heterogeneously
distributed across the cortex [99]. Machine
learning offers a means to align individual
brains based on their functional imaging
data. The individualized functional parcel-
lation of the cortex offered the first way
of establishing correspondence indepen-
dently of the anatomical frame by itera-
tive projection [101] or Bayesian models
[102]. Functional response patterns them-
selvescanbemappedtoarepresentational
space, where correspondence can be es-
tablished by so-called hyper-alignment of
functional response behavior, even if it
occurs at different cortical locations [28].
Finally, the functional connectivity archi-
tecture can be represented in an embed-
ding space decoupled from its anatomical
anchors, enabling the tracking of reor-
ganization across the cortex in patients
with brain tumors [29]. This allows us
to investigate shared functional architec-
ture across a large population and has
led to insights into the continual hierar-
chical structure of the cortical processing
in the form of so-called functional gradi-
ents [103]. The decoupling of anatomical
and functional alignment has shown that
the link between anatomy and function is
not equal across the cortex, but high in
primary areas, and comparatively low in
association areas or the prefrontal cortex
[104]. It has also enabled the compari-
son of neural architecture across species,
since despite cross-anatomical differences
there is sufficient similarity in the func-
tional connectivity structure to match and
compare across human and macaque cor-
tex [72]. Decouplinganatomyandfunction
has further enabled the study of the dif-

ferent impact of genes and environment
on the cortical topography of functional
units and their interconnectedness [105].
Recently, it hasbeenshownthat functional
alignment can improve the generalization
of machine learning algorithms to new
individuals [106].

Summary and challenges

Machine learning plays an increasingly
important role in the exploitation of
neuroimaging data for research and clin-
ical applications. Its capabilities range
from the computational segmentation of
anatomical structures and the quantifica-
tion of their properties to the detection
and characterization of disease-related
findings, such as tumors. In functional
imaging, machine learning is able to link
distributedactivationpatterns to cognitive
tasks. It is starting to enable the ability to
track and model processes such as reorga-
nization, disease progression, or recovery.
Unlike many other application fields of
machine learning, neuroimaging is itself
a source ofmethodological advancements
in areas such as deep learning. There,
the comparison of artificial network ar-
chitectures and learning algorithms with
biological mechanisms yields anchors for
novel methodology and fosters insights
into the working of the central nervous
system.

The current clinical relevance of ma-
chine learning is based on its ability to de-
tect, quantify, track, andcompareanatomy
and disease-related patterns. Some of
the most promising challenges facing the
field currently comprise three central di-
rections. First, for the linking of pheno-
typicdataobserved inneuroimagingtoun-
derlying biological mechanisms, machine
learning methodology can bridge the gap
between representing imaging data and
othermolecularmarkers of processes. Sec-
ond, embedding methods offer the ability
to go beyond the anatomical reference
frame when studying brain architecture
and its change during disease, treatment
response, and recovery. As the link be-
tween anatomy and function loses critical
importance as a basis for analysis, we gain
the ability to study their intricate relation-
ship and its variability. Finally, we need
to improve our understanding of differen-

tiating the vast natural variability of the
brain’s anatomyand functionand theoften
subtle deviations associated with disease.

Practical conclusion

4 Machine learning techniques can detect
and segment anatomical structures and
findings associated with disease to sup-
portdiagnosis and toprovidequantitative
characterizations.

4 Encoding and decoding models identify
brain areas whosemultivariate functional
activity is associated with specific cogni-
tive tasks.

4 Graph theoretical methods can analyze
and compare brain networks in individu-
als and across cohorts.

4 Representational models can uncouple
analysis of function and structure and
leverage the connectivity structure to es-
tablish correspondenceswhenanatomy is
affected by disease.
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Zusammenfassung

Maschinelles Lernen in der Neurobildgebung: von der Forschung in die
klinische Praxis

Die Neurobildgebung ist bei der klinischen Behandlung und Forschung ein
entscheidender Faktor, und ermöglicht es, das Gehirn in gesundem und krankem
Zustand zu untersuchen. Es besteht ein komplexer Zusammenhang zwischen der
morphologischen Struktur, der physiologischen Architektur und den entsprechenden
Bildmerkmalen. Die Form, Funktion und Verbindungen zwischen verschiedenen
Hirnarealen verändern sich während der frühen Entwicklung und im Laufe des
gesamten Lebens, sowie bei Krankheit und Genesung. Wie nur wenige andere Bereiche
zieht die Neurobildgebung einen Nutzen aus fortgeschrittenen Auswertungsverfahren,
mit denen Bildgebungsdaten analysiert werden, um das Gehirn und seine Funktion
zu untersuchen. Seit Kurzem leistet auch das maschinelle Lernen ein Beitrag (a) zu
anatomischen Messungen, der Erkennung, Segmentierung und Quantifizierung von
Läsionenund Krankheitsmustern, (b) zur schnellen Identifizierung akuter Erkrankungen
wie zum Beispiel Schlaganfall oder (c) zur Nachverfolgung von Veränderungen über die
Zeit. Mit den Fortschritten bei der Neurobildgebung und ihrer Auswertung nimmt auch
das Verständnis der komplexen Beziehungen zwischen Struktur und Funktion und ihrer
Bedeutung für die therapeutische Entscheidungsfindung zu. Für die vorliegende Arbeit
wurde der aktuelle Wissensstand zum Einsatz von Verfahren des maschinellen Lernens
bei der Auswertung von Daten aus der Neurobildgebung für klinische Behandlung
und Forschung erhoben; klinische Anwendungen sowie ihr Beitrag zur als Grundlage
dienenden computergestützten Neurowissenschaft werden im Überblick dargestellt.
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